Graph Class | Complexity |
---|---|
Split graph | NP-complete [4] |
Bipartite graph & $\Delta(G) \leq 6$ | NP-complete [1] |
Weighted tree | NP-complete [1] |
$\Delta(G) \leq 4$ | NP-complete [6]⠀ |
Superfragile graph | P [4] |
Threshold graph | P [3] |
Proper interval graph | P [4] |
Bipartite permutation graph | P [3] |
Graph Class | Complexity |
---|---|
Split graph | NP-complete [4] |
Bipartite graph & $\Delta(G) \leq 6$ | NP-complete [1] |
Weighted tree | NP-complete [1] |
$\Delta(G) \leq 4$ | NP-complete [6]⠀ |
Superfragile graph | P [4] |
Threshold graph | P [3] |
Proper interval graph | P [4] |
Bipartite permutation graph | P [3] |
Condition/Graph Class | Time Complexity |
---|---|
Bipartite permutation graph | $\mathcal{O}(|V| + |E|)$ [3] |
Complete bipartite graph | $\mathcal{O}(|V| + |E|)$ [3] |
Chained complete bipartite graph | $\mathcal{O}(c \cdot \log(|V|) \cdot \log(\log(|V|)))$ |
Condition/Graph Class | Time Complexity |
---|---|
Bipartite permutation graph | $\mathcal{O}(|V| + |E|)$ [3] |
Complete bipartite graph | $\mathcal{O}(\log(|V|) \cdot \log(\log(|V|)))$ |
Chained complete bipartite graph | $\mathcal{O}(c \cdot \log(|V|) \cdot \log(\log(|V|)))$ |
$g(s_i, C_j)$ | $= |N(s_i) \cap C_j|$ | $= \begin{cases} |{\color{#ff0000}X}_j| & \text{, if } s_i \in {\color{#006cff}Y}_j \\ |{\color{#006cff}Y}_j| & \text{, if } s_i \in {\color{#ff0000}X}_j \end{cases}$ |
$g({\color{#ff0000}x}_2, {\color{#ff0000}C_1}) = |\{{\color{#006cff}y}_1, {\color{#006cff}y}_2\}| = 2$ | $g({\color{#ff0000}x}_2, {\color{#008000}C_2}) = |\{{\color{#006cff}y}_3, {\color{#006cff}y}_4, {\color{#006cff}y}_5\}| = 3$ |
$g({\color{#006cff}y}_5, {\color{#008000}C_2}) = |\{{\color{#ff0000}x}_2, {\color{#ff0000}x}_3\}| = 2$ | $g({\color{#006cff}y}_5, {\color{#0000ff}C_3}) = |\{{\color{#ff0000}x}_4\}| = 1$ |
$I(G) = \sum\limits_{i=1}^{n}|{\color{#ff0000}X}_i| \cdot |{\color{#006cff}Y}_i| + (|{\color{#ff0000}X}_i| \mod 2) \cdot (|{\color{#006cff}Y}_i| \mod 2)$ | $~~~~\leftarrow$ Complete bigraph |
$~~~~~~~~-\Big( \sum\limits_{i=1}^{n-1}g(s_i,C_i)+g(s_i,C_{i+1})\Big)$ | $\left.\begin{aligned} ~\\ ~\\ ~\\ ~\\ ~\\ ~\\ \end{aligned}\right\rbrace\leftarrow$ Overlapping vertex correction |
$~~~~~~~~+\Big( \sum\limits_{i=1}^{n-1}\big|g(s_i,C_i)-g(s_i,C_{i+1})\big|\Big)$ |
$I(G) \leq \sum\limits_{i=1}^{n}|{\color{#ff0000}X}_i| \cdot |{\color{#006cff}Y}_i| + (|{\color{#ff0000}X}_i| \mod 2) \cdot (|{\color{#006cff}Y}_i| \mod 2)$ |
$~~~~~~~~-\Big( \sum\limits_{i=1}^{n-1}g(s_i,C_i)+g(s_i,C_{i+1})\Big)+\Big( \sum\limits_{i=1}^{n-1}\big|g(s_i,C_i)-g(s_i,C_{i+1})\big|\Big)$ |
$I(\sigma, G)=\sum\limits_{i=1}^{n}|{\color{#ff0000}X}_i| \cdot |{\color{#006cff}Y}_i| + (|{\color{#ff0000}X}_i| \mod 2) \cdot (|{\color{#006cff}Y}_i| \mod 2)$ |
$~~~~~~~~~~~~-\Big( \sum\limits_{i=1}^{n-1}g(s_i,C_i)+g(s_i,C_{i+1})\Big)+\Big( \sum\limits_{i=1}^{n-1}\big|g(s_i,C_i)-g(s_i,C_{i+1})\big|\Big).$ |
$I(G) \geq \sum\limits_{i=1}^{n}|{\color{#ff0000}X}_i| \cdot |{\color{#006cff}Y}_i| + (|{\color{#ff0000}X}_i| \mod 2) \cdot (|{\color{#006cff}Y}_i| \mod 2)$ |
$~~~~~~~~-\Big( \sum\limits_{i=1}^{n-1}g(s_i,C_i)+g(s_i,C_{i+1})\Big)+\Big( \sum\limits_{i=1}^{n-1}\big|g(s_i,C_i)-g(s_i,C_{i+1})\big|\Big)$ |
$I(G) = \sum\limits_{i=1}^{n}|{\color{#ff0000}X}_i| \cdot |{\color{#006cff}Y}_i| + (|{\color{#ff0000}X}_i| \mod 2) \cdot (|{\color{#006cff}Y}_i| \mod 2)$ |
$~~~~~~~~-\Big( \sum\limits_{i=1}^{n-1}g(s_i,C_i)+g(s_i,C_{i+1})\Big)$ |
$~~~~~~~~+\Big( \sum\limits_{i=1}^{n-1}\big|g(s_i,C_i)-g(s_i,C_{i+1})\big|\Big)$ |
[1] | Biedl, T., Chan, T., Ganjali, Y., Hajiaghayi, M.T., Wood, D.R.: Balanced vertex-orderings of graphs. Discrete Applied Mathematics 148(1), 27 – 48 (2005). https://doi.org/https://doi.org/10.1016/j.dam.2004.12.001, http://www.sciencedirect.com/science/article/pii/S0166218X04003828 |
[2] | Dı́az, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Computing Surveys (CSUR) 34(3), 313–356 (2002) |
[3] | Gorzny, J.: Computing imbalance-minimal orderings for bipartite permutation graphs and threshold graphs. In: Wu, W., Zhang, Z. (eds.) Combinatorial Optimization and Applications. pp. 766–779. Springer International Publishing, Cham (2020) |
[4] | Gorzny, J., Buss, J.F.: Imbalance, cutwidth, and the structure of optimal orderings. In: Du, D.Z., Duan, Z., Tian, C. (eds.) Computing and Combinatorics. pp. 219–231. Springer International Publishing, Cham (2019) |
[5] | Harvey, D., van der Hoeven, J.: Integer multiplication in time o(n log n). Annals of Mathematics 193(2), 563–617 (2021), https://www.jstor.org/stable/10.4007/annals.2021.193.2.4 |
[6] | Kára, J., Kratochvı́l, J., Wood, D.R.: On the complexity of the balanced vertex ordering problem. In: Wang, L. (ed.) Computing and Combinatorics. pp. 849–858. Springer Berlin Heidelberg, Berlin, Heidelberg (2005) |
[7] | Wood, D.: Minimising the number of bends and volume in three-dimensional orthogonal graph drawings with a diagonal vertex layout. Algorithmica (New York) 39 (03 2002). https://doi.org/10.1007/s00453-004-1091-4 |